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Abstract
Recently established rationality of correlation functions in a globally conformal
invariant quantum field theory satisfying Wightman axioms is used to construct
a family of soluble models in four-dimensional Minkowski spacetime. We
consider in detail a model of a neutral scalar field φ of dimension two. It
depends on a positive real parameter c, an analogue of the Virasoro central
charge, and admits for all (finite) c an infinite number of conserved symmetric
tensor currents. The operator product algebra of φ is shown to coincide with a
simpler one, generated by a bilocal scalar field V (x1, x2) of dimension (1, 1).
The modes of V together with the unit operator span an infinite-dimensional
Lie algebra LV whose vacuum (i.e. zero-energy lowest-weight) representations
only depend on the central charge c. Wightman positivity (i.e. unitarity of the
representations of LV ) is proven to be equivalent to c ∈ N.

PACS numbers: 11.25.Hf, 02.20.Tw, 03.70.+k

1. Introduction

The task of constructing a conformally invariant quantum field theory model—using dressed
vertices and (global) operator product expansions (OPEs)—was set forth over 30 years ago
(see [9,11,16,17,19–22,25–30,33,34]; for a review of this early work and further references
see [36]). After a relatively quiet period (during which only some sporadic applications of the
formalism appeared—see e.g. [7]) the subject was gradually revived (see [6,10,12,15,24,31,35]
among others) in the wake of the two-dimensional conformal field theory (2D CFT) revolution
(now the subject of textbooks—see e.g. [8] where a bibliography of original work can be
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found). It gathered new momentum with the discovery of the AdS–CFT correspondence and
the associated intensified study of the N = 4 supersymmetric Yang–Mills theory (for a sample
of recent papers and further references see [1, 4]).

The present work is chiefly motivated by the concept of a rational conformal field theory
(RCFT). Although this notion arose in the framework of 2D CFT, recent work [23] suggests
that it may be relevant to any number of spacetime dimensions. We consider in detail the
simplest example beyond free fields, given in [23], the case of a model of a neutral scalar field
of dimension two. More complicated (and potentially more interesting) cases involving fields
of dimensions three and four are only briefly discussed.

We start by recalling the relevant results of [23] which allow us to derive the general
expressions for the four-point Wightman functions.

Adding to the Wightman axioms a condition of global conformal invariance (GCI) of
local observables (i.e. invariance of correlation functions under a single-valued action of the
fourfold cover G = SU(2, 2) of the conformal group whenever x and gx (g ∈ G) both belong
to Minkowski space) we deduce the Huygens principle: local fields φ(x), ψ(y) commute
whenever the difference x − y is non-isotropic; moreover,

[(x − y)2]N [φ(x), ψ(y)] = 0 for N � 1 (1.1)

(see [23] theorem 4.1 and proposition 4.3, where the precise bound for N is given). This result
is based on the fact that a spacelike separated pair of points in Minkowski space can be mapped
by a proper conformal transformation into a timelike one. (Thus, GCI is a stronger requirement
than invariance of Schwinger functions under the Euclidean conformal group.) The Huygens
principle implies (together with energy positivity) that the Wightman distributions are rational
functions of the form

W(x1, . . . , xn) (≡〈1, . . . , n〉) = P(x1, . . . , xn)
∏

1�j<k�n

(ρjk)
−µjk , (1.2)

where P is a polynomial (in general, tensor valued),

xjk ≡ xj − xk, ρjk = x2
jk + i0 x0

jk (x2 = x2 − x2
0 ), µjk ∈ Z+ (1.3)

(see [23] theorem 3.1; the i0x0
jk is only essential when ρjk occurs in denominators and

prescribes the contour integration for Wightman distributions that reflects energy positivity—
see [32]). Hilbert space positivity is taken into account using OPE and the classification of
positive-energy unitary irreducible representations of G [18].

Expanding the discussion of section 5 of [23] we shall derive the general form of the
truncated four-point function W t

4(d) of a neutral scalar field φ of integer dimension d satisfying
GCI (see equation (2.1) below).

Combining proposition 5.3 and corollary 4.4 of [23] we can write

W t
4(d) ≡ W t (x1, . . . , x4; d) = Dd(ρij )Pd(η1, η2)

Dd(ρij ) = (ρ13 ρ24)
d−2

(ρ12 ρ23 ρ34 ρ14)d−1
, Pd(η1, η2) =

∑
i,j�0

i+j�2d−3

cij η
i
1 η

j

2,
(1.4)

where ηi are the conformally invariant cross ratios

η1 = ρ12 ρ34

ρ13 ρ24
, η2 = ρ14 ρ23

ρ13 ρ24
. (1.5)

For x2
jk 	= 0 we can ignore the i0x0

jk term in the definition of ρjk (1.3). The Huygens
principle (strong locality) then implies symmetry under the permutation group S4. Its normal
subgroup Z2×Z2 (with non-trivial elements s12 s34, s14 s23 and s13 s24, where sij is a substitution
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exchanging i and j ) acts trivially on η1 and η2. Hence, it suffices to impose invariance under
the six-element factor group S4/Z2 × Z2

∼= S3 generated by

s12 : Pd(η1, η2) �→ η2d−3
2 Pd

(
η1

η2
,

1

η2

)
= Pd(η1, η2),

s23 : Pd(η1, η2) �→ η2d−3
1 Pd

(
1

η1
,
η2

η1

)
= Pd(η1, η2)

(1.6)

(which also involves s13 = s12 s23 s12 = s23 s12 s23, implying Pd(η2, η1) = Pd(η1, η2)). This
leaves us with the following4 [[d2/3]] independent coefficients:

cij for i � j � 2d − 3− i

2
(cij = cji = ci,2d−3−i−j = c2d−3−i−j,i = cj,2d−3−i−j = c2d−3−i−j,j ).

(1.7)

This paper is chiefly devoted to the case d = 2, that is the minimal d for which a non-zero
truncated four-point function W t

4(d) exists. We shall set in this case5

〈12〉 = c2

2
(12)2, 〈123〉 = c3 (12)(23)(13),

W t
4(d = 2) = c4 (12)(23)(34)(14) (1 + η1 + η2),

(ij) = (4π2 ρij )
−1.

(1.8)

Parameters such as

c := c3
2

c2
3

= 8
〈12〉〈23〉〈13〉
(〈123〉)2

, c′ := c2
2

c4
(1.9)

are invariant under rescaling of φ. It will be proven in section 2 that if there is a single field (φ)
of dimension two then these constants are equal. Moreover, their common value c (=c′) also
determines the normalization of the two-point function of the stress–energy tensor and thus
appears as a generalization of the Virasoro central charge. We shall then restrict our attention
to the case of a single field φ corresponding to c2 = c3 = c4 = c.

Similarly, the general truncated four-point function for d = 3 is

W t
4(3) =

ρ13 ρ24

(ρ12 ρ23 ρ34 ρ14)2
{c0(1 + η3

1 + η3
2) + c1[(η1 + η2)(1 + η1η2) + η2

1 + η2
2] + b η1η2}

(ci ≡ c0i for i = 0, 1, and b ≡ c11). (1.10)

The requirement that no d = 2 (scalar) field is present in the OPE of two φ in this case gives
c1 = −c0 (	=0, should one demand the presence of a stress–energy tensor in the OPE).

The case d = 4 appears to be particularly interesting and will be briefly discussed in the
concluding section 6.

The paper is organized as follows.
In section 2 we write down the OPE of two φ in terms of a bilocal scalar field V (x1, x2) of

dimension (1, 1) which satisfies—in each argument—the (free) d’Alembert equation. Using
this result we sketch a proof of the statement that V belongs to the OPE algebra generated by
φ, a property only valid in four spacetime dimensions. The free-field equations for V then
imply that the truncated n-point function of φ is expressed as a sum of one-loop diagrams
with propagators (ij) and a common factor cn for all n � 4. The uniqueness of the field φ of
dimension two is proven to correspond to cn = c αn.

4 [[a]] stands for the integer part of a ([[d2/3]]= 1, 3, 5, 8, for d = 2, 3, 4, 5; [[(d +1)2/3]]−[[d2/3]]= [[(2/3) (d +1)]]
= 1, 2, 2, 3 for d = 1, 2, 3, 4).
5 The four-point Wightman function obtained from (1.8) coincides with that given by proposition 5.3 and
equation (5.16) of [23] for N2 = c2/32π4, C2 = c4/(2π)8, C20 = C21 = 0.
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In section 3 we establish the existence of an infinite set of conservation laws: the term
with light cone singularity (12)(34) is reproduced by the contribution of an infinite number of
(even-rank) conserved symmetric traceless tensor currents

T2l(x, ζ ) = Tµ1 ... µ2l (x) ζ
µ1 · · · ζµ2l , �ζ T2l(x, ζ ) = 0 = ∂2

∂xµ ∂ζµ
T2l(x, ζ ), (1.11)

to the OPE of two φ (including the l = 0 term T0(x) = φ(x)). For φ expressed as a linear
combination of normal products of free fields

φ(x) = 1
2

N∑
i=1

αi : ϕ2
i (x) : 〈0|ϕi(x1) ϕj (x2)|0〉 = δij (12) (1.12)

the stress–energy tensor is also given by the sum of free-field expressions:

T2 (x, ζ ) =
N∑
i=1

: {(ζ · ∂ϕi(x))2 − 1
2 ζ 2 ∂µϕi ∂

µϕi + 1
6 [ζ 2 �− (ζ · ∂)2]ϕ2

i (x)} : . (1.13)

The case of equal cn = c (n = 2, 3, . . .)—i.e. of a unique φ—corresponds to αi = 1
(for i = 1, . . . , N) and c = N . The truncatedn-point functions ofT2(x, ζ ) remain proportional
to its free massless scalar field expression for all c > 0. Thus, the parameter c indeed plays
the role of a four-dimensional extension of the Virasoro central charge.

In section 4 we study the mode expansion of the bilocal field V , which naturally appears
in the so-called analytic compact picture. We exhibit an infinite-dimensional Lie algebra LV

spanned by the modes Vnm(z1, z2) of V and by the unit operator.
In section 5 we prove that the unitary positive-energy representations of LV correspond

to positive integer c (theorem 5.1). Combining this theorem with propositions 2.2 and 2.3 we
derive the same result for the original field algebra of the d = 2 scalar field φ. This implies
that φ belongs to the Borchers class of a system of free fields [5] (see [32] for a text-book
introduction to this concept).

Section 6 is devoted to a discussion of the results. We indicate on the way how the methods
of this paper apply to fields of dimensions three and four, and end up with the formulation of
two open problems.

2. One-loop n-point functions. OPE in terms of a bilocal field

We begin by rewriting the expression for the general four-point function of a neutral scalar
field φ(x) of dimension two satisfying GCI in a form that suggests its generalization to the
n-point function. According to (1.8) we have

〈1234〉 = 〈12〉〈34〉 + 〈13〉〈24〉 + 〈14〉〈23〉 + W t
4,

(
〈ij〉 = c2

2
(ij)2

)
, (2.1)

where the truncated four-point Wightman function can be written as a sum of contributions of
three box diagrams:

W t
4 = c4 {(12)(34)(23)(14) + (12)(34)(13)(24) + (13)(24)(14)(23)}. (2.2)

This expression is reproduced by an OPE for the product of two φ that can be written
compactly in terms of bilocal fields:

〈0|φ(x1)φ(x2) = 〈0|{〈12〉 + (12)V (x1, x2)+ : φ(x1)φ(x2) :},
V (x1, x2) = V (x2, x1),

(2.3)

where the three terms are mutually orthogonal

〈0|V (x1, x2) |0〉 = 0 = 〈0| : φ(x1)φ(x2) : |0〉 = 〈0|V (x1, x2) : φ(x3)φ(x4) : |0〉, (2.4)
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and satisfy

〈0|V (x1, x2)V (x3, x4) |0〉 = c4 {(13)(24) + (14)(23)},
〈0|V (x1, x2)φ(x3) |0〉 = c3 (13)(23),

(2.5)

〈0| : φ(x1)φ(x2) : φ(x3)φ(x4) |0〉 = 〈13〉〈24〉 + 〈14〉〈23〉 + c4 (13)(23)(14)(24). (2.6)

(In general, a field V (x1, x2) is said to be bilocal if [V (x1, x2), V (x3, x4)] = 0 for xi spacelike
to xj , i = 1, 2, j = 3, 4 and if it commutes with all local fields φ(x3) of the theory for spacelike
xi3, i = 1, 2.)

A priori, the algebra of V and : φ(x1)φ(x2) : may be larger than the OPE algebra of φ.
This is a non-trivial result, valid only in four dimensions, that the (symmetric) bilocal fields
V (x1, x2) and : φ(x1)φ(x2) : can actually be determined separately from the expansion (2.3).

Proposition 2.1. If V (x1, x2) is a bilocal field obeying (2.5) then it satisfies in each argument
the d’Alembert equation:

�1V (x1, x2) = 0 = �2V (x1, x2), �i = ∂2

∂x
µ

i ∂xi µ
, i = 1, 2, (2.7)

provided the metric in the state space is positive definite.

Proof. The vector-valued distribution �iV (x1, x2)|0〉, i = 1, 2, vanishes, due to Wightman
positivity since the norm squares of the corresponding smeared vectors are expressed in terms
of the four-point function in the first equation (2.5). The vanishing of �iV then follows from
local commutativity by virtue of the Reeh–Schlieder theorem. (The argument is essentially
the same as the proof of the statement that the vacuum is a separating vector for local fields—
see [32] section 4.) �

Proposition 2.2. The bilocal field

W(x1, x2) := 4π2 x 2
12 {φ(x1)φ(x2)− 〈12〉} = V (x1, x2) + 4π2 x2

12 : φ(x1)φ(x2) : (2.8)

allows us to determine the Taylor coefficients in x1 at x1 = x2 of the two terms in the right-hand
side separately.

Sketch of proof6. The (pseudo)harmonicity of V (2.7) implies

(y ∂1)
nW(x1, x)|x1=x = (y ∂1)

nV (x1, x)|x1=x + y2 n(n− 1)4π2 : [(y ∂x)
n−2φ(x)]φ(x) : .

(2.9)

In view of (2.7)�y(y ∂1)
nV (x1, x)|x1=x = 0; thus (y ∂1)

nV (x1, x)|x1=x appears as the harmonic
part of the left-hand side of (2.9) viewed as a polynomial in y and hence is uniquely determined
by W(x + y, x). �

It is clear from (2.5) that V (x1, x2) is nonsingular for coinciding arguments. We can thus
define a second local field

φ2(x) = 1
2 V (x, x), (2.10)

of dimension two; it can be a multiple of φ(x) only if the ratios (1.9) coincide. Indeed, it
follows from (1.8) and (2.5) that

〈0|φ(x1)φ(x2)|0〉 = 〈12〉, 〈0|φ2(x1)φ(x2)|0〉 = c3

c2
〈12〉,

〈0|φ2(x1)φ2(x2)|0〉 = c4

c2
〈12〉;

thus
6 Complete proofs of propositions 2.2 and 2.3 will be published elsewhere.
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φ2(x) = λφ(x)

(
=c3

c2
φ(x)

)
implies c2 c4 = c2

3. (2.11)

The preceding discussion admits an extension to the n-point truncated function. If we set,
generalizing (2.2),

W t
n(x1, . . . , xn) = cn

2

∑
σ ∈Perm{2...n}

(1σ2) σ2σ3· · · σn−1σn(1σn),

σiσj=
{
(σiσj ) for σi < σj

(σjσi) for σj < σi ,
n = 2, 3, 4, . . . (2.12)

then the field φ(x) of dimension two is unique if cn = c αn for some α > 0, n = 2, 3, . . . .
If we define V1 as a linear combination of normal products of free (massless) fields,

V1(x1, x2) =
N∑
i=1

αi : ϕi(x1)ϕi(x2), (2.13)

and set φ(x) = φ1(x) = 1
2 V1(x, x), then we can reproduce (2.12) with

cn =
N∑
i=1

αn
i . (2.14)

Furthermore, we can introduce inductively a series of bilocal and local fields Vn(x1, x2) and
φn(x) of dimensions (1, 1) and two setting

Vn(x1, x2) = lim
x34→0

{4π2x2
34 [V1(x1, x3)Vn−1(x2, x4)− cn ((12)(34) + (14)(32))]}

=
N∑
i=1

αn
i : ϕi(x1)ϕi(x2) :, φn(x) = 1

2 Vn(x, x). (2.15)

Note that the limit (2.15) is independent of the point x3 = x4 and that the field V appearing in
the OPE (2.3) coincides with V2.

The dimension of the space of different d = 2 fields φk(x) is equal to the number of
different values of αi in (2.13). To see this we note that the Gram determinant of inner
products

〈0|φj (x1)φk(x2)|0〉 = 1
2 (12)2

N∑
i=1

α
j+k
i (2.16)

is a multiple of
∏N

i=1 α2
i

∏
1�j<k�N (αj − αk)

2.

Remark 2.1. Fields of type (2.13) have been studied in a different context (for bounded two-
dimensional fields) in [3,13] where also infinite sums are admitted. We restrict our discussion
to finite N since only in this case does a stress–energy tensor exist—and is given by (1.13).

From now on we shall restrict our discussion to the simplest case of a single field φ of
dimension two and set

cn = c for n = 2, 3, 4, . . . (2.17)

(absorbing the possible factor αn in the normalization of φ).
The general form (2.12) of the truncated n-point function can in fact, be deduced.
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Proposition 2.3. Let φ(x) be a GCI Wightman field of dimension two whose truncated n-point
function is given by (2.12) with cn = c for n � 4. Then the limit

V (x1, x2) = lim
ρ13→0
ρ23→0

(2π)4ρ13ρ23{φ(x1)φ(x2)φ(x3)− 〈13〉φ(x2)− 〈23〉φ(x1)− 〈123〉} (2.18)

exists, does not depend on x3 and defines a harmonic in each argument bilocal field V (x1, x2).
Furthermore, the truncated n-point functions of φ will be given by (2.12) for all n.

Sketch of proof. Equation (2.2) and the conservation of the stress–energy tensor (see section 3)
imply that (2.12) is valid for n � 6. The one-loop expression for the six-point function allows
us to derive (2.18). The expression for the correlation function (2.5) of two V satisfies the
d’Alembert equation in each argument. By virtue of proposition 2.1 the operator field V obeys
this equation in its entire domain. Equation (2.12) for n � 6 implies an expansion of the form

φ(x1)φ(x2)φ(x3) |0〉 = 〈123〉 |0〉
+

∑
i=1,2,3

j<k, j 	=i 	=k

{〈jk〉φ(xi) + ij ik V (xj , xk) + (jk) : V (xj , xk)φ(xi) :}|0〉

+ : φ(x1)φ(x2)φ(x3) : |0〉 (2.19)

((i, j, k) form permutations of 1, 2, 3). The result then follows. �

Remark 2.2. If we drop the requirement of Wightman positivity—which implies the validity
of the stress–energy tensor conservation as an operator equation—then the general form of the
truncated five-point function would be

W t
5(x1, . . . , x5) = λW t

5(2.12) + 4π2c (1− λ)
∑

1�i<j�5

ρij
∏

1�k�5
j 	=k 	=j

ik kj , λ ∈ R. (2.20)

We note that the one-dimensional timelike restriction φ(t, ) of φ(x) satisfies all properties of
the chiral stress–energy tensor in a 2D CFT. It follows that all restricted truncated functions
should have the form (2.12). This is satisfied by (2.20) (for our choice of constants) because
of a non-trivial identity between the two terms in the one-dimensional case.

Corollary 2.4. Under the assumptions of proposition 2.3 one can prove (also using
proposition 2.2) that the field algebra of φ(x) coincides with the algebra of the bilocal field
V (x1, x2).

Demanding that the truncated n-point function of φ for n � 3 is strictly less singular in
xij than its two-point function we have taken into account a necessary condition for Wightman
positivity. We shall prove a necessary and sufficient condition for positivity in section 5.

Remark 2.3. If we rescale the field φ by a factor c−
1
2 and let c→∞ we recover the case of

a generalized free field of dimension two:

if φ̂(x) = 1√
c
φ(x) then

lim
c→∞ 〈0| φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4) |0〉 = 〈12〉1〈34〉1 + 〈13〉1〈24〉1 + 〈14〉1〈23〉1,

(2.21)

where 〈ij〉1 = 1
2 (ij)

2.
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3. Expansion of V (x1, x2) in local fields. Infinite set of conserved tensor currents

We shall now demonstrate that our model possesses an infinite number of conserved local
tensor currents. More precisely, the bilocal field V (x1, x2) can be expanded in a series of
even-rank, conserved symmetric traceless tensor fields T2l(x, ζ ) (1.11) (of twist = dimension
− rank = 2):

V (x1, x2) = 2
∞∑
l=0

Cl Kl(x12 · ∂2, ρ12 �2)T2l(x2, x12), (3.1)

reproducing the four-point function (2.5). Here

Kl(s, t) = (2l + 1)!

(l!)2

∫ 1

0
dα αl(1− α)leαs

∞∑
n=0

(− α (1−α)
4 t

)n
n! (2l + 1)n

, (Kl(0, 0) = 1), (3.2)

∂2 is the derivative in x2 for fixed x12, �2 is the corresponding d’Alembert operator, (ν)n =
0(n + ν)/0(ν); it is chosen to transform the two-point function 〈0|T2l(x2, ζ2)T2l(x3, ζ3)|0〉
into a three-point function:

Kl(x12 · ∂2, ρ12 �2)
(x12 · r(x23) · ζ )2l

ρ2l+2
23

= (X · ζ )2l

ρ13 ρ23
, (3.3)

where

ξ · r(x23) · ζ = ξ · ζ − 2
(ξ · x23)(ζ · x23)

ρ23
,

X := X3
12 := x13

ρ13
− x23

ρ23
,(

X2 = ρ12

ρ13 ρ23

)
.

(3.4)

In verifying (3.3) (see [10]) one applies the relation(�y

4

)n
(y · ζ )m
(y2)ν

= (ν)n(ν −m− 1)n
(y2)n+ν

(y · ζ )m for ζ 2 = 0

(used for y = x23 + α x12). In order to compute the individual contribution of T2l to the
four-point function of φ we need the three-point function

〈0|V (x1, x2)T2l(x3, ζ )|0〉 = Nl Cl (13)(23)(X2ζ 2)lC1
2l(X̂ · ζ̂ ), X̂ := X√

X2
, (3.5)

where Nl > 0; C1
n(z) is the Gegenbauer polynomial satisfying{
(1− z2)

d2

dz2
− 3z

d

dz
+ n(n + 2)

}
C1
n(z) = 0, C1

n(1) = n + 1. (3.6)

Writing the normalization constant in (3.5) as a product, NlCl , we exploit the fact that the
three-point function vanishes whenever the structure constant Cl = 0.

Remark 3.1. The homogeneous polynomial H2l(x, ζ ) = (x2 ζ 2)lC1
2l(x̂ · ζ̂ ) is the harmonic

extension of the monomial (2 x · ζ )2l defined on the light cone ζ 2 = 0 (cf [2]):

�ζH2l(x, ζ ) = (x2)l(ζ 2)l−1 ×
{
(1− z2)

d2

dz2
C1

2l(z)− 3z
d

dz
C1

2l(z) + 4l(l + 1) C1
2l(z)

}
= 0

(for z = x̂ · ζ̂ ), H2l(x, ζ )|ζ 2=0 = (2 x · ζ )2l . (3.7)

Similarly, the two-point function 〈0|T2l(x1, ζ1)T2l(x2, ζ2)|0〉 is proportional to ρ−2l−2
12 (ζ 2

1 ζ
2
2 )

l

C1
2l(ζ̂1 · ζ̂2 − 2(ζ̂1 · x12)(ζ̂2 · x12)/ρ12).
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Inserting (2.3) in the four-point function (2.1) (2.2) and using (2.5) and the expansion (3.1)
for V (x3, x4) we find

〈0|φ(x1)φ(x2)V (x3, x4)|0〉 = c (12)((13)(24) + (14)(23))

= 2
∞∑
l=0

Cl Kl(x34 · ∂4, ρ34 �4)〈0|φ(x1)φ(x2)T2l(x4, x34)|0〉

= 4〈12〉
∞∑
l=0

Nl C
2
l

(4l + 1)!

(2l)!2

∫ 1

0
dα α2l(1− α)2l

(−[α (1− α)/4] ρ34 �4
)n

n! (2l + 1)n

× ρl
34 (X

2
y)

l+1 C1
2l(X̂y · x̂34),

Xy = x1 − y

ρ1y
− x2 − y

ρ2y
, y = x4 + α x34,

ρiy = ρi4(1− α) + αρi3 − α(1− α)ρ34, i = 1, 2.

(3.8)

It will be convenient for what follows to substitute the second conformally invariant cross
ratio η2 (1.5) by the difference ε = 1− η2, which tends to zero for x34 → 0 (or x12 → 0):

ε = 1− η2 (= O(x34) = O(x12)). (3.9)

Proposition 3.1. For

Nl C
2
l = C

(
4l
2l

)−1

(3.10)

the contribution of V (x3, x4) to the four-point function (2.1) is reproduced by the
superposition (3.8) of three-point functions of the twist two fields T2l

〈0|V (x1, x2)V (x3, x4)|0〉
(13)(24)

= c

(
1 +

1

1− ε

)

= 2c
∞∑
l=0

(4l + 1)
∫ 1

0

[
ε α (1− α)

1− ε α

]2l dα

1− ε α
. (3.11)

The proof of this statement is given in appendix A.
The Ward–Takahashi identity for the time-ordered three-point function of the stress–

energy tensor allows us to compute the normalization N1C1 of the Wightman function (3.5):

〈0|φ(x1)φ(x2)T2(x3, ζ ) |0〉 = 〈12〉
3π2

X2(X2ζ 2 − 4(X · ζ )2),

i.e. N1 C1 = −2
c

3
. (3.12)

Comparing with (3.10) we find:

C1 = −1

4
, N1 = 8

c

3
. (3.13)

Remark 3.2. It is instructive to note that the contribution of each T2l to the ratio (3.11) (given
by the lth term in the right-hand side) involves a logarithmic function in 1−ε (see appendix A)
while the infinite sum is a rational function of ε.

4. The infinite-dimensional Lie algebra of field modes and its bilocal realization

The conformal compactification M = S
3 × S

1/Z2 of Minkowski space M = R
3,1 gives

rise to a natural notion of conformal energy, the generator of (isometric) rotation of the
timelike circle S

1, and of an associated discrete basis of field modes. We shall parametrize
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M following ([35]) in terms of complex coordinates z = (za, a = 1, 2, 3, 4) fixed by the
involution z �→ z∗ := z/z2:

M =
{
z = (za ∈ C, a = 1, . . . , 4); z∗a := za

z2 = za

(
z2 =

∑
a

z2
a =: z2 + z2

4

)}
. (4.1)

This condition implies the property

z2 z2 = 1,
za zb

z2
= za zb = za zb ∈ R for z ∈ M (4.2)

which, in turn, characterizes this parametrization ofM . We choose the embedding mapM ⊂ M

as

M � (x0,x) �→ z = ω−1(x)x, z4 = 1− x2

2ω(x)
, ω(x) = 1 + x2

2
− i x0. (4.3)

Clearly, z defined by (4.3) satisfies (4.2); in particular,

z2 = ω(x)

ω(x)
= (1 + i x0)2 + x2

(1− i x0)2 + x2
= 1

z2 , |z2| = z · z = 1 (for z ∈ M). (4.4)

In order to write down the inverse transformation it is convenient to present z in terms of a
complex quaternion (or, equivalently, an element of U(2)—see [37]):

q z = z4 + z q, qi qj = εijk qk − δij (i.e. q1 q2 = −q2 q1 = q3, etc). (4.5)

The cone at infinity, K∞ = M \M , consists of the quaternions qz ∈ M for which 1 + qz is not
invertible

q z ∈ K∞ iff 2ω−1
z := (1 + q z)(1 + q+ z) = (1 + z4)

2 + z2 = 0(q+ z = z4 − q z). (4.6)

For qz /∈ K∞ we can set

i x̃ := i x0 + q x = q z− 1

q z + 1
or i x0 = ωz

z2 − 1

2
,

x = ωz z = 2 z

(1 + z4)2 + z2
.

(4.7)

We shall use the fact that the flat metric on M is related to the Poincaré invariant metric on M

by the complex conformal factor ω (4.3)

dz2 = dz2 + dz2
4 = ω−2(x) dx2 (dx2 = dx2 − dx2

0 ). (4.8)

To a scalar field φM(x) of dimension d in Minkowski space we make correspond an analytic
z-picture field φ(z) defined by

φ(z) = (2π)d ωd
z φM(x(z))

(
ωz = 2

(1 + z4)2 + z2
= ω(x(z))

)
(4.9)

for x(z) given by (4.7). The term analytic is justified by the fact that energy positivity implies
analyticity of the vector-valued function φ(z)|0〉 for |z| 2 < 1. Indeed, the future tube T+

= {ζ ∈ C
4; Im ζ 0 > |Im ζ |}, the analyticity domain of φM(ζ )|0〉 (see [32]), is mapped into

a complex neighbourhood T+ of the four-dimensional unit ball B
4; more precisely, we have

B
4 = {ξ ∈ R

4; ξ 2 := ξ 2 + ξ 2
4 < 1},

B
4 × S

1/Z2 = {z = ξeiτ ; ξ ∈ B
4, τ ∈ R} ⊂ T+.

(4.10)

Note that M appears as the boundary of the five-dimensional manifold B
4 × S

1t/Z
2:

z ∈ M iff z = eiτ ẑ, τ ∈ R, ẑ ∈ S
3 = {ẑ ∈ R

4; ẑ2 = 1}. (4.11)
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The conformal Hamiltonian H is, in this picture, nothing but the (Hermitian) generator of
translation in τ :

eiHt φ(z) e−iHt = eitd φ(eit z) or [H,φ(z)] =
(
d + za

∂

∂za

)
φ(z),

H |0〉 = 0.
(4.12)

The decomposition of φ into eigenmodes of H reads

φ(z) =
∑
n∈Z

φn(z), [φn(z),H ] = nφn(z). (4.13)

The modes φn(z) can be written as power series in za and 1/z2 that are homogeneous in z of
degree −n− d .

For a free field ϕ(z) of dimension d = 1 the modes ϕ±n are homogeneous harmonic

polynomials spanning a space of dimension n2
(

as a space of SO(4) symmetric traceless

tensors of rank n − 1:
(

n + 2
3

)
−

(
n

3

)
= n2

)
; in particular, ϕ0(z) = 0, ϕ1(z) = a1/z

2,

ϕ−1(z) = a−1, ϕ2(z) = a
µ

2 zµ/(z
2)2, ϕ−2(z) = a

µ

−2zµ etc. They are subject to the canonical
commutation relations [35]

[ϕn(z), ϕm(w)] = (w2)(n−1)/2

(z2)(n+1)/2
C1
|n|−1(ẑ · ŵ) ε(n) δn,−m,

(
z =

√
z2 ẑ

)

ε(n) =




1 for n > 0

0 for n = 0

−1 for n < 0.

(4.14)

(Here one uses the fact that the two-point function 〈0|ϕ(z)ϕ(w)|0〉 = 1/(z − w)2 appears as
a generating function for the Gegenbauer polynomials defined in (3.6).)

One can expand the bilocal field V in modes V =∑
n,m

n	=0 	=m
Vnm, which behave as products

of ϕ-modes:

<zVnm(z,w) = 0 = <wVnm(z,w),(
z · ∂

∂z
+ n + 1

)
Vnm(z,w) = 0 =

(
w · ∂

∂w
+ m + 1

)
Vnm(z,w).

(4.15)

(The homogeneity condition only agrees with the Laplace equation if we set V0m = 0 = Vn0.)
The modes of the d = 2 field φ are most conveniently expressed as infinite sums of V -modes:

2φn(z) =
∑
ν∈Z

Vν,n−ν(z, z)(Vmn(z, z) = Vnm(z, z)). (4.16)

The components Vν,n−ν(z, z) of φn(z) (unlike those of ϕn(z)) span an infinite-dimensional
space. This is a common feature for scalar fields of dimension d > 1 (more generally, for
elementary conformal fields of weight (j1, j2; d) with d � j1 + j2 + 2, in the notation of [18]
and [23], which, as a result, cannot obey a free-field equation). It is all the more remarkable
that the state space for a given energy n is always finite-dimensional. This is a consequence
of the analyticity of the vector-valued function Vnm(z,w)|0〉 for z,w ∈ T+. Indeed, it then
follows from (4.10) and (4.15) that

Vnm(z,w)|0〉 = 0 if n � 0 or m � 0. (4.17)

Consequently, only (n− 1) terms of the infinite sum (4.16) contribute to the vector φ−n(z)|0〉:
2φ−n(z)|0〉 =

∑n−1
ν=1 V−ν,ν−n(z, z)|0〉.
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In order to display the identity of the vacuum state spaces of φ and V , guaranteed by
corollary 2.4, we need to include the composite twist two fields T2l(z, ζ ) in the operator
algebra of φ. Here is the realization of the four lowest-energy spaces in the two pictures.
Setting for the vacuum Hilbert space

H = H0 ⊕
∞⊕
n=2

Hn, (H − n)Hn = 0 (dim H0 = dim H2 = 1)

we can write down a basis in H2, H3 and H4 as follows:

φ−2 |0〉 = 1
2 V−1,−1 |0〉; φa

−3 za |0〉 = V a
−2,−1 za |0〉 (= zaV

a
−1,−2 |0〉);

{φab
−4 |0〉, T2(0, ζ )|0〉, φ2

−2 |0〉} ∼ {V ab
−2,−2 za zb |0〉, V ab

−3,−1 za zb |0〉, V 2
−1,−1 |0〉}.

The difficulty in describing the full state space H in such a manner stems from the
fact that the modes of φ do not span an (infinite-dimensional) Lie algebra: the commutator
[φ(z1), φ(z2)] also involves all twist two conserved tensors T2l(z2, z12) (and their derivatives
in the first argument). T2l (l = 0, 1, . . .) together with the unit operator exhaust, in fact,
the singular terms in the OPE φ(z)φ(w)|0〉. The resulting commutator algebra simplifies
drastically for collinear zj = ζj e (e2 = 1): it then reduces to the Virasoro algebra,

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn,−m for φn(ζ e) = Ln

ζ n+2
, Ln = φn(e).

(4.18)

The point is that the second argument, z12, of T2 cancels the singular factor 1/z2
12 in the OPE

in the one-dimensional case.
Using the orthogonality of different quasiprimary fields we can produce a sample of

projected commutation relations between φn(z) for non-collinear arguments illustrating the
appearance of the Virasoro subalgebra as a special case.

To begin with we note that the vacuum OPE (2.3) remains valid in the z-picture provided
we set

(12) = 1

z2
12

(
implying 〈12〉 = c

2
(12)2 = c

2
(z2

12)
−2, z2 = z2 + z2

4

)
(4.19)

(the singularity at z 2
12 = 0 being treated as a limit from the domain |z2

1| > |z2
2|). Using the

knowledge of the generating function for the Gegenbauer polynomials,(
1

(z− w)2

)λ

= 1

(z2)λ

(
1− 2ẑ · ŵ

√
w2

z2
+
w2

z2

)−λ
= 1

(z2)λ

∞∑
n=0

(
w2

z2

)n/2

Cλ
n(ẑ · ŵ), (4.20)

and the expressions (1.8) and (2.2) for two-, three- and four-point correlation functions of φ,
we can write the term involving the central extension of the Lie algebra generated by φn:

〈0|φ2 [φn(z), φ−n(w)]φ−2 |0〉 = (w2)n/2−1

(z2)n/2

×〈0|φ2

{
C1
n−2(ẑ · ŵ) φ0(z) +

w2

z2
C1
n(ẑ · ŵ)φ0(w) +

c

2 z2
C2
n−2(ẑ · ŵ)

}
φ−2 |0〉

n � 1, (Cλ
−1 ≡ 0). (4.21)

The Virasoro subalgebra (4.18) is recovered for collinear arguments noting the normalization
property for Gegenbauer polynomials:

Cλ
n(1) =

(
n + 2 λ− 1

n

)
= (2 λ)n

n!
,

(
2

ν + 1

ν∑
l=0

C1
µ−l(1) = 2µ + 2− ν

)
. (4.22)
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(In particular, equation (4.21) reproduces (4.18) for n + m = 0.)
The Lie algebra LV of the bilocal field V is much simpler to describe. The modes Vnm

of V satisfying (4.15) and the unit operator span by themselves an infinite-dimensional Lie
algebra:

[Vn1n2(z1, z2), Vn3n4(z3, z4)] = c

4∏
j=1

(z2
j )
−(nj+1)/2 {C1

|n1|−1(ẑ1 · ẑ3) C
1
|n2|−1(ẑ2 · ẑ4) δn1,−n3 δn2,−n4

+ C1
|n1|−1(ẑ1 · ẑ4) C

1
|n2|−1(ẑ2 · ẑ3) δn1,−n4 δn2,−n3}ε(n1) ε(n2)

+ (z2
1)
−(n1+1)/2(z2

3)
−(n3+1)/2C1

|n1|−1(ẑ1 · ẑ3)ε(n1) δn1,−n3 Vn2n4(z2, z4)

+ (z2
2)
−(n2+1)/2(z2

3)
−(n3+1)/2C1

|n2|−1(ẑ2 · ẑ3)ε(n2) δn2,−n3 Vn1n4(z1, z4)

+ (z2
1)
−(n1+1)/2(z2

4)
−(n4+1)/2C1

|n1|−1(ẑ1 · ẑ4)ε(n1) δn1,−n4 Vn2n3(z2, z3)

+ (z2
2)
−(n2+1)/2(z2

4)
−(n4+1)/2C1

|n2|−1(ẑ2 · ẑ4)ε(n2) δn2,−n4 Vn1n3(z1, z3). (4.23)

This is, in fact, a central extension of the infinite-dimensional real symplectic algebra sp(∞,R).
According to (4.16) the φ-modes belong to this algebra. The vacuum representation of LV is
characterized by the energy positivity condition (4.17).

The associative algebra of Vnm(z, w) contains an ideal I0 generated by

{Vn0(z, w) (= V0n(w, z)) ; n ∈ Z} (∈ I0) (4.24)

which annihilates all states in the vector space HV spanned by polynomials in V−n,−m
(n,m ∈ N) acting on the vacuum. Although I0 may well be represented non-trivially in
other sectors of the theory it is natural to work with the factor algebra BV in the vacuum sector.
Indeed, BV can be identified as the operator algebra, generated by the bilocal field V , acting
(non-trivially) in HV . The relative simplicity of the operator algebra BV in HV stems from
the fact that the modes Vnm(z,w) (n 	= 0 	= m) are (homogeneous) harmonic functions in z

and w—see (4.15). It follows from our analysis of the mode space of the free field ϕ(z) that
Vnm(z,w) span a space of dimension n2m2 except for the diagonal, n = m, for which the

symmetry of V implies that the dimension of the space is

(
n2 + 1

2

)
.

The modes Vnm are eigenvectors of the Cartan elements

hl = l

2π2

∫
V−l,l(u, u) δ(

√
u2 − 1) d4u, (u2 = u2 + u2

4), l ∈ N. (4.25)

(Parametrizing u ∈ S
3 by u = (sinψ sin θ cosϕ, sinψ sin θ, sinψ cos θ, cosψ) we can

replace the volume element δ(
√
u2 −1) d4u by sin2 ψ sin θ dψ dθ dϕ, 0 � ψ � π , 0 � θ � π ,

0 � ϕ � 2π ; the normalization factor 1/2π2 fixes the integral (of 1) over S
3 to 1.) We have,

in particular,

(hl − δlm − δln)V−n,−m(ẑ, ŵ) |0〉 = 0 (for n,m ∈ N). (4.26)

In deriving this property one uses the relation

l

2π2

∫
C1
l−1(ŵ · u)C1

n−1(u · ẑ) δ
(√

u2 − 1
)

d4u = δln C
1
n−1(ŵ · ẑ). (4.27)

It follows that the conformal Hamiltonian H defined in (4.12) can be written in the form

H =
∞∑
l=1

l hl. (4.28)
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5. Unitary vacuum representations of LV

We begin by introducing an anti-involution in BV and the associated inner product in H.
We define a star operator in the algebra of modes, setting

Vnm(z,w)∗ = V−m,−n(w, z) (= V−n,−m(z,w)) for z,w ∈ M, (5.1)

so that V (z,w)∗ = V (z,w).

Remark 5.1. The anti-involution (5.1) involves a correspondence between homogeneous
harmonic functions of degree n− 1 and −n− 1. If we write, for n,m > 0,

V−n,−m(z,w) = V
b1...bn−1,a1...am−1
−n,−m zb1 . . . zbn−1 wa1 . . . wam−1

then we shall have

V−n,−m(z,w)∗ = Vmn(w, z) = 1

w2 z2
V a1...am−1,b1...bn−1
mn

wa1

w2
· · · wam−1

w2

zb1

z2
· · · zbn−1

z2
,

where bothV−n,−m andVnm are symmetric traceless tensors of rank (n−1,m−1) (with respect
to the indices ai and bj , separately).

We shall call a Hilbert space (H) representation of LV unitary if the (positive) scalar
product in H and the conjugation (5.1) in LV are related by

(B,XC ) = (X∗B,C ) for every X ∈ LV , B,C ∈ HF , (5.2)

where HF is the dense subspace of finite energy vectors of H which belongs to the domain of
any X in LV .

One can introduce a (not necessarily positive) inner product 〈, 〉 in HV satisfying (5.2)
defining the bra vacuum by conditions conjugate to (4.17):

〈0|Vnm = 0 unless n > 0 and m > 0, (5.3)

and assuming 〈0|0〉 = 1. The main result of this section is the following characterization of
the unitary vacuum representation of LV .

Theorem 5.1. The inner product in HV , defined for a (normalized) vacuum vector
satisfying (4.17) and (5.3) and for Vnm(z,w) obeying (4.23), is positive semidefinite iff c ∈ Z+

= {0, 1, 2, . . .}.

Proof. Fix a unit vector e ∈ S
3 and consider the one-dimensional subalgebra Le

V of LV

generated by

vnm := Vnm(e, e) ∈ Le
V ⊂ LV , n,m ∈ Z, e2 = 1. (5.4)

It follows from (4.23) and from (4.22) that vnm satisfy the commutation relations of the modes
of a one-dimensional (chiral) bilocal current:

[vn1m1 , vn2m2 ] = c n1 m1(δn1,−n2 δm1,−m2 + δn1,−m2 δm1,−n2)

+ n1(δn1,−n2 vm1m2 + δn1,−m2 vm1n2) + m1(δm1,−n2 vn1m2 + δm1,−m2 vn1n2). (5.5)

�

Lemma 5.2. There is a vector |<n〉 ∈ H(n(n+1))
V whose norm square is a multiple of

c(c − 1) · · · (c − n + 1):

〈<n| = 1

n!
〈0|

∣∣∣∣∣∣∣
v11 v12 . . . v1n

v21 v22 . . . v2n

. . . . . . . . . . . .

vn1 vn2 . . . vnn

∣∣∣∣∣∣∣ ,
〈<n|<n〉 ≡ ‖|<n〉‖2 = (n + 1)! c(c − 1) · · · (c − n + 1).

(5.6)



Four-dimensional conformal field theory models with rational correlation functions 2999

Proof. It follows from (5.5) that the norm square of a polynomial of degree n in vkl is a
polynomial of degree (not exceeding) n in c. We shall demonstrate that 〈<n|<n〉 vanishes for
integer c in the interval 0 � c < n. To this end we note that if c is a positive integer and �Jm,
m ∈ Z are c-dimensional operator-valued vectors �Jm = {J i

m, i = 1, . . . , c} satisfying

[J i
m, J

j
n ] = mδm,−n δij , m, n ∈ Z, i, j = 1, . . . , c, (5.7)

then the normal products

v
(c)
lm =: �Jl · �Jm :≡

c∑
i=1

: J i
l J

i
m : (5.8)

satisfy the commutation relations (5.5). If c < n then det (vij )| i,j=1,...,n appearing in the
definition of 〈<n|, which is the Gram determinant of the scalar products of n vectors in a
c-dimensional space, should vanish. The coefficient (n + 1)! to the leading (nth) power of c
is computed as a sum of norm squares of terms entering the expansion of the determinant; for
instance, for n = 4 we have

lim
c→∞

(
1

c4
〈<4|<4〉

)
= 1

4!2 c4
{‖〈0|V11 . . . V44‖2 + 6 ‖〈0|V 2

12 V33 V44‖2

+ 4 ‖〈0|V12 V23 V13 V44‖2 + 3 ‖〈0|V 2
12 V

2
34‖2

+ 3 ‖2 〈0|V12 V23 V34 V14‖2}
= 24 + 6× 8 + 4× 8 + 3× 4 + 3× 4 = 120 (= 5!).

Remark 5.2. The Lie algebra LV of bilocal modes, characterized by the commutation
relations (4.23), has a reductive star subalgebra U∞ (with no central extension) generated
by V−n,m(z,w), n,m ∈ N:

[V−n1,m1(ẑ1, ŵ1), V−n2,m2(ẑ2, ŵ2)]

= C1
m1−1(ŵ1 · ẑ2) δm1n2 V−n1,m2(ẑ1, ŵ2)

−C1
m2−1(ŵ2 · ẑ1) δm2n1 V−n2,m1(ẑ2, ŵ1), (ẑ2

i = ŵ2
j = 1) (5.9)

with a central element

C1 =
∞∑
n=1

hn, (5.10)

where hn are the Cartan operators (4.25). We have

[V−l,m(ẑ, ŵ), C1 ] = 1

2π2

∫
{mC1

m−1(ŵ · u) V−l,m(ẑ, u)

− l C1
l−1(ẑ · u) V−l,m(u, ŵ)} δ(

√
u2 − 1) d4u = 0, (5.11)

where we again used the relation (4.27). U∞ contains what could be called the Cartan
subalgebra of LV spanned by the elements V−n,n(e, e) for n ∈ N, e2 = 1 (including hl (4.25)).
LV is compounded by U∞, the unit element and by a pair of conjugate Abelian subalgebras
L± (which are U∞ modules), spanned by

L+ ⊃ {V−n,−m(z,w)}, L− ⊃ {Vnm(z,w)}, n,m ∈ N. (5.12)

L+ consists of positive, L− of negative, root vectors with respect to the Cartan elements
hl (4.25):

[hl, V∓n,∓m(ẑ, ŵ)] = ±(δln + δlm) V∓n,∓m(ẑ, ŵ). (5.13)
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The commutators between elements of L− and L+ belong to U∞∪ c. The operator

C2 =
∞∑

n,m=1

nm

8π4

∫ ∫
V−n,−m(v, u) Vmn(u, v) δ(

√
u2 − 1)δ(

√
v2 − 1) d4u d4v (5.14)

commutes with U∞ and should have a positive spectrum in any unitary representation of LV .
The counterpart of C2 (5.14) for the subalgebra Le

V ,

Ce
2 =

1

2

∑
n,m�1

1

nm
v−n,−m vmn (5.15)

has its minimal eigenvalue in the subspace

H(n)
e = {Pn(v−k,−l)|0〉;Pn homogeneous of degree n in v−k,−l}

on the vector |<n〉 (conjugate to) (5.6):

Ce
2 |<n〉 = n(c − n + 1) |<n〉, [Ce

2 − n(c − n + 1) ]|H(n)
e

� 0. (5.16)

We have, for instance,

(Ce
2 − n[c + 2(n− 1)]) vn−k,−k|0〉 = 0 = (Ce

2 − n c) v−2n,−(2n−1) . . . v−2,−1|0〉.
It follows from lemma 5.2 that there exist negative norm vectors unless c is a positive

integer. To prove that for c ∈ N the vacuum representation of LV is indeed unitary it suffices
to note that in this case V can be written in the form

V (z1, z2) =
c∑

i=1

:ϕi(z1)ϕi(z2) : (5.17)

where ϕi are mutually commuting free zero-mass fields and to recall that a system of free fields
satisfies all Wightman axioms (including positivity). �

We have established on the way the following result (as a direct consequence of lemma 5.2).

Proposition 5.3. The vacuum representation of the infinite-dimensional Lie algebra Lv of the
two-dimensional bilocal chiral field

v(z,w) = 1

zw

∑
n,m∈Z

vnm z−n w−m, z,w ∈ C (5.18)

whose modes satisfy (5.5) (and vmn |0〉 = 0 unless m < 0 and n < 0) is only unitary for
positive integer c.

This is an analogue of the Kac–Radul theorem [14] on the unitary representations of the
W1+∞ algebra. It is clear that the algebra of the two-dimensional stress tensor

T (z) = 1
2 v(z, z) =

∑
n∈Z

Ln z
−n−2, (5.19)

i.e. the Virasoro algebra (4.18), is a true subalgebra of Lv since it admits unitary representations
for all c � 1 as well as a discrete series for c = cn = 1 − 6/(n + 1)(n + 2) (n = 1, 2, . . . ,
the unitary Virasoro module Hcn being the quotient space of the corresponding lowest-weight
module with respect to a singular vector at ‘level’ (= eigenvalue of L0) n(n + 1)).

The situation is different for D = 4 since V (z,w) is harmonic in each argument in this
case. Due to corollary 2.4 the algebra BV is then not bigger than the original OPE algebra of
φ, so the result of theorem 5.1 extends to it.

Corollary 5.4. Under the assumptions of proposition 2.3 it follows from theorem 5.1 that
the quantum theory of the field φ with truncated n-point function (2.12) satisfies Wightman
positivity iff c is a natural number (in which case φ belongs to the Borchers class of a set of
free fields).
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6. Extensions of the results. Concluding remarks

The preceding results—and methods—apply to fields of higher dimension and arbitrary tensor
structure. We shall establish important special cases of the following

Conjecture. If a neutral tensor field of integer dimension has truncated n-point functions
which are multiples of the corresponding correlators of normal products of (derivatives of)
free fields for n � 6, then Wightman positivity implies that the proportionality constant is a
positive integer. (As indicated in section 2, for d = 2 the statement follows from the expression
for the four-point function.)

Our first example is a conserved current whose (first five) truncated correlation functions
are obtained from those of the current of a system of two-component spinors,

Jµ(x; cψ) =
cψ∑
j=1

: ψ∗j (x)σ̃
µψj (x) :, (−σ̃ 0) = σ̃0 = 1I = σ0, σ̃

j = −σ j = −σj ,

(6.1)

by substituting the positive integer cψ by an arbitrary real number. Here ψj are mutually
anticommuting free Weyl fields:

〈0|ψj(x1) ψ
∗
k (x2) |0〉 = δjk S(x12), S(x12) = i ∂∼2(12) = i

x
∼12

2π2 ρ2
12

, (6.2)

and we have used the conventions

∂∼2 = σµ
∂

∂x2µ
(x∼ = σµx

µ), σµ σ̃ν + σν σ̃
µ = −2 δµν . (6.3)

Introducing the spin-tensor components of the current

J (x)(= Jα β̇(x)) = 1
2 σµJ

µ

(
=

cψ∑
j=1

: ψjα(x)ψ
∗
j β̇
(x) :

)
(6.4)

we can write

〈0| Jα1 β̇1
(x1) Jα2 β̇2

(x2) |0〉 = cψ Sα1 β̇2
(x12)

tSβ̇1 α2
(x12)

= cψ

{
Sα1 β̇2

(x12) Sα2 β̇1
(x12)−

εα1 α2εβ̇1 β̇2

4π4 ρ3
12

}
, (6.5)

Jα1 β̇1
(x1) Jα2 β̇2

(x2)− 〈0| Jα1 β̇1
(x1) Jα2 β̇2

(x2) |0〉 = t Sβ̇1 α2
(x12) Vα1 β̇2

(x1, x2)

+ Sα1 β̇2
(x12)

tVβ̇1 α2
(x1, x2)+ : Jα1 β̇1

(x1) Jα2 β̇2
(x2) :, (6.6)

where t S ( tV ) stands for the transposition of S (V ). Multiplying both sides by

(2π2/i) ρ12 x̃
β̇2α2
12 and setting

Wα1 β̇1
(x1, x2) = 2π2

i
ρ12 x̃

β̇2α2
12 {Jα1 β̇1

(x1) Jα2 β̇2
(x2)− 〈0| Jα1 β̇1

(x1) Jα2 β̇2
(x2) |0〉} (6.7)

we obtain

Wα1 β̇1
(x1, x2) = Vα1 β̇1

(x1, x2) + tVβ̇1 α1
(x1, x2)+ : Jα1 β̇1

(x1) tr(x̃12 J (x2)) : (6.8)

where the bilocal field V satisfies

〈0|Vα1 β̇1
(x1, x2) Vα2 β̇2

(x3, x4) |0〉 = Sα1 β̇2
(x14)

tSβ̇1 α2
(x23). (6.9)

It follows from (6.9) that
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∂̃
α̇ α1
1 Vα1 β̇1

(x1, x2) = 0 = Vα1 β̇1
(x1, x2)

←−
∂

∂x2µ
σ̃ β̇1 β
µ . (6.10)

As a result Vαβ̇ and the normal product of J appearing in the right-hand side of (6.9) can be
determined separately and we can prove as in section 5 that cψ(cψ − 1) · · · (cψ − n + 1) � 0
for n = 1, 2, . . . .

As a second example we consider the Lagrangean density

LF (x) = − 1
4

cF∑
a=1

: Fa
µν(x) F

µν
a (x) : (cF ∈ N) (6.11)

and the associated analytic continuation of truncated Wightman functions to arbitrary positive
real cF . The truncated n-point function of LF can again be written as a sum of 1

2 (n − 1)!
one-loop graphs, the propagator associated with a line joining the vertices 1 and 2 being

Dλ1µ1λ2µ2(x12) = 1

4
{∂λ1(∂λ2 ηµ1µ2 − ∂µ2 ηµ1λ2)− ∂µ1(∂λ2 ηλ1µ2 − ∂µ2 ηλ1λ2)}

1

4π2ρ12

= rλ1λ2(x12) rµ1µ2(x12)− rλ1µ2(x12) rµ1λ2(x12)

4π2 ρ2
12

. (6.12)

This expression for the propagator also enters the OPE of two L (together with a tensor-
valued bilocal field):

〈0|LF (x1)LF (x2) = 〈0|{2 cF Dλ1 µ1 λ2 µ2(x12)Dλ1 µ1 λ2 µ2(x12)

+ Dλ1 µ1 λ2 µ2(x12) Vλ1 µ1 λ2 µ2(x1, x2) + : LF (x1)LF (x2) :},
2 Dλ1 µ1 λ2 µ2 Dλ1 µ1 λ2 µ2 =

3

(π ρ12)4
.

(6.13)

For c ∈ N, V has a realization as a sum of normal products of free Maxwell fields:

Vλ1 µ1 λ2 µ2(x1, x2) =:F a
λ1 µ1

(x1)F
a

λ2 µ2
(x2) : . (6.14)

The OPE (6.13) allows us to compute the truncated four-point function of LF which
appears as a special case of the five-parameter expression W t

4(d = 4) computed from
equations (1.4)–(1.7):

W t
4(4) =

ρ2
13 ρ

2
24

ρ3
12 ρ

3
23 ρ

3
34 ρ

3
14

{c0(1 + η5
1 + η5

2) + c1(η1 + η2 + η4
1 + η4

2 + η1 η2 (η
3
1 + η3

2))

+ c2(η
2
1 + η2

2 + η3
1 + η3

2 + η2
1 η

2
2 (η1 + η2))

+ b1 η1 η2(1 + η2
1 + η2

2) + b2 η1 η2(η1 η2 + η1 + η2)}
(ci ≡ c0i for i = 0, 1, 2; bi ≡ c1i for i = 1, 2). (6.15)

Indeed the contribution W� of the box diagram (computed by using formulae for traces of
products of rµν given in appendix B),

W� = cF Dλ1 λ2
µ1 µ2

(x12)D µ1 µ4
λ1 λ4

(x14)D µ2 µ3
λ2 λ3

(x23)Dλ3 λ4
µ3 µ4

(x34)

= 32 cF
1

(2π)4(ρ12ρ23ρ34ρ14)2

(
1 +

η1

η2
+
η2

η1
− 2

η2
− 2

η1
+

1

η1η2

)
, (6.16)

which enters the expression for the truncated four-point function of L(x)
W t

4 = (1 + s12 + s23)W�(x1, x2, x3, x4)

= W�(x1, x2, x3, x4) + W�(x2, x1, x3, x4) + W�(x1, x3, x2, x4) (6.17)

fits the expression (6.15) for

c0 = c2 = b1 = −1

2
c1 = cF

8π8
, b2 = 0. (6.18)
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The first local field in the expansion of V around the diagonal is the stress–energy tensor:

T µ
ν = 1

4 V κλ
κλ(x, x)δ

µ
ν − V λµ

λν(x, x) = −L(x)δµν − V λµ
λν(x, x). (6.19)

Conversely, the bilocal tensor field V λ1µ1
λ2µ2(x1, x2) (= −V µ1λ1

λ2µ2(x1, x2) = −V λ1µ1
µ2λ2

(x1, x2)) appears in the OPE of two T µ
ν and can be determined from it in two steps. First, one

derives the formula

〈0|V λ1µ1
λ2µ2(x1, x2) V

λ3µ3
λ4µ4(x3, x4) |0〉 = cF Dλ1µ1λ3µ3(x13)Dλ2µ2λ4µ4(x24)

+ cF Dλ1µ1
λ4µ4(x14)Dλ3µ3

λ2µ2(x23) (6.20)

and deduces from it that V λ1µ1
λ2µ2(x1, x2) satisfies in each argument the free Maxwell

equations. Secondly, one uses this fact to single out the contribution of V in the OPE of
two T . Once more Wightman positivity implies cF ∈ N.

Remark 6.1. The use of different notation, c(= cφ)cψ and cF for the constants multiplying
the truncated functions of normal products of the free fields φ, ψ and Fµν , respectively, is
justified by the fact that they correspond to (and exhaust the) different tensor structures in the
general conformal invariant three-point function of the stress–energy tensor [31].

At the same time the four-point functions of the conserved current Jµ and L(x) involve
structures which cannot be reduced to normal products of free fields. If, for instance, b2 	= 0
in (6.15) the three-point function of L(x) will not vanish (unlike the case of superposition
of type (6.11) of normal products of free Maxwell fields). More generally, we have a
four-parameter family of admissible four-point functions of L(x) obtained from equation (6.15)
with the restriction

c2 = −c0 − c1 (	= 2 c0) (6.21)

coming from the requirement that no d = 2 field appears in the OPE of L(x1)L(x2) (and that
the stress–energy tensor is present in this OPE). They are only compatible with three-point
functions of T of the type (6.19) (i.e. with the third of the three admissible structures in this
three-point function given in [31]—cf remark 6.1).

To summarize: looking for a 4D RCFT beyond the Borchers’ class of free fields we have
excluded the theory of a bilocal field of dimension (1, 1) and have come to the following
problem. Assume that the only local fields in the observable algebra, satisfying GCI, of
dimension d � 4 are the (conserved traceless) stress–energy tensor Tµν(x) and a scalar field
L(x) of dimension four (playing the role of an action density). The problem is to construct
an OPE algebra consistent with the n-point functions of these fields for n � 4 that would
allow us to compute higher point correlation functions and to implement the condition of
Wightman positivity. This example is attractive because the dimensions of the basic fields L
and Tµν are protected. Moreover, in any renormalizable quantum field theory one can define
a (gauge-invariant) local action density and a stress–energy tensor.
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Appendix A. Proof of proposition 3.1

We shall first compute the sum in the right-hand side of (3.8) for

ρ34 = 0,

2Xy · x34 = ρ14 − ρ13

(1− α)ρ14 + α ρ13
− ρ24 − ρ23

(1− α)ρ24 + α ρ23

= ρ14 ρ23 − ρ13 ρ24

[(1− α)ρ14 + α ρ13][(1− α)ρ24 + α ρ23]

= −ε[
α + (1− α)ρ14/ρ13

][
1− α + α ρ23/ρ24

] ,
ρ13 ρ24

ρ12
X2

y =
1[

α + (1− α)ρ14/ρ13
][

1− α + α ρ23/ρ24
] ,

(A.1)

and then use the result to give a general proof of proposition 3.1. According to (A.1) we have

lim
ρ34→0

(ρ34X
2
y)

l C1
2l(X̂y · x̂34) = ε2l[

α + (1− α)ρ14/ρ13
]2l[

1− α + α ρ23/ρ24
]2l .

Conformal invariance allows us to send x1 to infinity, setting ρ14/ρ13 → 1, ρ23/ρ24 → 1− ε,
thus reproducing the right-hand side of (3.11). Taking the sum in l we reduce the proof of (3.11)
to verifying the identity

2
∫ 1

0

(1− ε α)[(1− ε α)2 + ε2α2(1− α)2]

(1− ε α2)(1− 2 ε α + ε α2)
dα = 1 +

1

1− ε
(A.2)

which is straightforward.
It is also instructive to compute the individual terms in the right-hand side of (3.11)

which correspond to the contribution of twist two fields to the OPE. Using Euler’s integral
representation for the hypergeometric function we find

1 +
1

1− ε
= 2

∞∑
l=0

(
4l
2l

)−1

ε2l F (2l + 1, 2l + 1; 4l + 2; ε). (A.3)

Each F(2l + 1, 2l + 1; 4l + 2; ε) is, in fact, an elementary function. In particular, the first two
terms which provide the contribution of the original field φ and of the stress–energy tensor T2

to the OPE can be written in the form

2
∫ 1

0

〈0|V (x1, x2)φ(x4 + α x34)|0〉
c(13)(24)

dα

∣∣∣∣
ρ34=0

= 2F(1, 1; 2; ε)

= 2

ε
ln

1

1− ε
= 2 + ε +

∞∑
n=2

2 εn

n + 1
,

2C1

∫ 1

0

〈0|V (x1, x2)T2(x4 + α x34, x34)|0〉
c(13)(24)

dα

∣∣∣∣
ρ34=0

= ε2

3
F(3, 3; 6; ε)

= 60

ε2

[(
1

ε
− 1 +

ε

6

)
ln

1

1− ε
− 1 +

ε

2

]

= ε2

{
1

3
+
ε

2
+

∞∑
n=2

(4)n−1(5)n−2 ε
n

(3)n−2(7)n−1

}
.

(A.4)

Proceeding to the general case (ρ34 	= 0) we shall use the following generalization of (A.3)
(see [10]). Exchange the conformal cross ratios (1.5) (3.9) with the variables η and η related
to η1 and ε by

η η = η1, η + η = ε + η1, ((1− η)(1− η) = η2). (A.5)



Four-dimensional conformal field theory models with rational correlation functions 3005

(We note that for spacelike xij the variables η and η are complex conjugate to each other.) In
terms of these variables we can write (see equation (3.10) of [10])

2

X2
y

(4l + 1)
∫ 1

0
dα α2l(1− α)2l

∞∑
n=0

(−[α (1− α)/4] ρ34 �4
)n

n! (2l + 1)n
ρl

34 (X
2
y)

l+1 C1
2l(X̂y · x̂34)

= 2

(
4l
2l

)−1
η2l+1 F(2l+1, 2l+1; 4l+2; η)− η2l+1 F(2l+1, 2l+1; 4l+2; η)

η − η
.

(A.6)

We can sum up these expressions applying (A.3); as a result the η1-dependent terms present
for each l cancel and we end up with

2

η − η
×

∞∑
l=0

(
4l
2l

)−1

{η2l+1 F(2l + 1, 2l + 1; 4l + 2; η)− η2l+1 F(2l + 1, 2l + 1; 4l + 2; η)}

= 1

η − η

(
η +

η

1− η
− η − η

1− η

)
= 1 +

1

(1− η)(1− η)
= 1 +

1

1− ε

. (A.7)

This completes the proof of proposition 3.1. �

Appendix B. Traces of products of rµ
ν (x)

We shall compute the trace of the product of tensor structures that appears in the numerator of
the box diagram with propagator (6.12):

B = f
λ1µ1
λ2µ2

(x12) f
λ2µ2
λ3µ3

(x23) f
λ3µ3
λ4µ4

(x34) f
λ4µ4
λ1µ1

(x14),

f
λµ

λ′µ′(x) = rλλ′(x) r
µ

µ′(x)− rλµ′(x) r
µ

λ′(x),
(B.1)

establishing on the way some useful properties of products of rµν (x) = δµν − 2 xµ xν/x
2 +

i 0 x0 (3.4) (of different arguments) which appear in correlation functions of tensor fields.
We shall use repeatedly the triple-product formula of [24]:

r(x12) r(x23) r(x13) = r(X23), i.e.

rλσ (x12) r
σ
τ (x23) r

τ
µ(x13) = rλµ(X23), X23 = x13

ρ13
− x12

ρ12
. (B.2)

Using the identity r(x)2 = 1 we find

R(x12, x23, x34, x14) := r(x12) r(x23) r(x34) r(x14)

= [r(x12) r(x23) r(x13)][r(x13) r(x34) r(x14)]

= r(X23) r(X34), (B.3)

where X34 ≡ X1
34 = x14/ρ14 − x13/ρ13 (cf (3.4)). Using further the relation

tr(r(x) r(y))

(
= 4

(x · y)2

x2 y2
+ D − 4

)
= 4

(x · y)2

x2 y2
for D = 4 (B.4)

we deduce (for ηi given by (1.5))

tr(R(x12, x23, x34, x14)) = (2X23 ·X34)
2

X2
23 X

2
34

= (1− η1 − η2)
2

η1 η2
. (B.5)

A simple algebra allows us to reduce B (B.1) to the difference

B = 8 {[tr R(x12, x23, x34, x14)]
2 − tr([R(x12, x23, x34, x14)]

2)}. (B.6)
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The second term is computed using (B.3) once more:

tr([R(x12, x23, x34, x14)]
2) = tr( r(X23) r(X34) r(X23) r(X34))

= tr

{
r

{
ρ12 x14 − ρ14 x12

ρ2
24

+
ρ12 x13 − ρ13 x12

ρ2
23

)

× r

(
ρ13 x14 − ρ14 x13

ρ2
34

+
ρ12 x14 − ρ14 x12

ρ2
24

)}

= (1− 2 η1 − 2 η2 + η2
1 + η2

2)
2

η2
1 η

2
2

. (B.7)

Finally inserting (B.5) and (B.7) we find

B = 32

η1 η2
(1− 2 η1 − 2 η2 + η2

1 + η2
2 + η1 η2). (B.8)
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